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Miscible fingering in a Hele-Shaw cell is studied by means of Stokes simulations and
linear stability analysis. The two-dimensional simulations of miscible displacements
in a gap indicate the existence of a quasi-steady state near the tip of the displacement
front for sufficiently large Péclet numbers and viscosity ratios, in agreement with
earlier work by other authors. The front thickness of this quasi-steady state is seen
to scale with Pe−1/2, while it depends only weakly on the viscosity ratio. The nature
of the viscosity–concentration relationship is found to have a significant influence on
the quasi-steady state. For the exponential relationship employed throughout most of
the investigation, we find that the tip velocity increases with Pe for small viscosity
ratios, while it decreases with Pe for large ratios. In contrast, for a linear viscosity–
concentration relationship the tip velocity is seen to increase with Pe for all viscosity
ratios. The simulation results suggest that in the limit of high Pe and large viscosity
contrast, the width and tip velocity of the displacement front asymptote to the same
values as their immiscible counterparts in the limit of large capillary numbers.

In a subsequent step, the stability of the quasi-steady front to spanwise perturbations
is examined, based on the three-dimensional Stokes equations. For all values of Pe,
the maximum growth rate is found to increase monotonically with the viscosity ratio.
The influence of Pe on the growth of the instability is non-uniform. For mild viscosity
contrasts, a larger Pe is found to be destabilizing, while for large viscosity contrasts an
increase in Pe has a slightly stabilizing influence. A close inspection of the instability
eigenfunction reveals the presence of two sets of counter-rotating roll-like structures,
with axes aligned in the cross-gap and streamwise directions, respectively. The former
lead to the periodic acceleration and deceleration of the front, while the latter result
in the widening and narrowing of the front. These roll-like structures are aligned in
such a way that the front widens where it speeds up, and narrows where it slows
down. The findings from the present stability analysis are discussed and compared
with their Darcy counterparts, as well as with experimental data by other authors for
miscible and immiscible flows.

1. Introduction
The instability that forms when one fluid displaces another one of larger viscosity in

a porous medium was first analysed half a century ago (Hill 1952; Saffman & Taylor
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1958; Chouke, Meurs & Poel 1959). In the decades since then, the viscous fingering
instability has triggered a large body of experimental, theoretical and computational
research (cf. reviews by Homsy 1987; Yortsos 1987) that sheds light on many of its
fascinating facets. Its importance for practical applications such as oil recovery and
hydrology, along with the central role it plays in the fundamental area of pattern
formation, suggests that the exploration of the many remaining open issues will
continue for years to come.

In the past, much of the theoretical and computational work on unstable miscible
displacements has employed Darcy’s law. Within this framework, Tan & Homsy
(1986, 1987) investigate the linear stability of the flow as a function of the base
flow concentration profile. They find that larger viscosity contrasts and steeper
concentration fronts always result in higher growth rates and shorter wavelengths
of the most dangerous mode. Corresponding results are obtained for vertical
displacements with density stratification as well (Manickam & Homsy 1995). Similarly,
Yortsos (1987) observes that in radial displacements both the most unstable and
the cutoff wavenumbers scale linearly with the Péclet number of the flow. This
destabilizing influence of larger Péclet numbers and viscosity contrasts is confirmed by
nonlinear simulations of both rectilinear and radial displacements (Chen & Meiburg
1998; Ruith & Meiburg 2000 and references therein).

In contrast to these Darcy-based stability investigations, many experimental studies
of viscous fingering have employed Hele-Shaw configurations, rather than ‘true’
porous media. The main reason for this approach lies in the ease with which the flow
can be visualized in such apparatuses. In his classical set of experiments for vertically
driven miscible interfaces, Wooding (1969) distinguishes the diffusively dominated
short-time behaviour from its convectively dominated long-time counterpart. Paterson
(1985) investigates the viscous fingering instability when water radially displaces
glycerin in a horizontal geometry. For large Péclet numbers of O(105), he observes a
dominant wavelength of about four times the gap width. In downward displacements
of a fluid by a lighter and less viscous one, Lajeunesse et al. (1997) find wavelengths
closer to five times the gap width. These authors furthermore establish a critical
velocity and viscosity ratio for a three-dimensional pattern to evolve.

It is well-known that the analogy between a true porous medium and a Hele-Shaw
cell is incomplete (Homsy 1987), owing to the different nature of flow-induced
dispersion effects in the two set-ups (Taylor 1953). Thus a comparison between
Darcy results and Hele-Shaw experiments is not straightforward. To date, a closed-
form description of dispersion in variable viscosity and density displacements within
Hele-Shaw cells or porous media remains elusive. However, several attempts have
been made to incorporate its effects into Darcy-based linear stability investigations,
most of them based on the model of a passive tracer fluid (Taylor 1953). In this
way, Tan & Homsy (1987) find a stabilizing influence of transverse dispersion. On
the other hand, Yortsos & Zeybek (1988) observe a strongly destabilizing effect of
longitudinal dispersion at high mobility ratios, which leads to an infinite short-wave
cutoff wavelength in the limit of step-like base profiles. A similar approach towards
modelling dispersive effects was taken in the nonlinear simulations by Petitjeans et al.
(1999). Yang & Yortsos (1997), on the other hand, explicitly address Stokes flows
in the Hele-Shaw geometry. They show by way of an asymptotic analysis that the
approach of employing a convection–dispersion equation for the volume-averaged
concentration is of limited value at high Péclet numbers. Yortsos & Zeybek (1988)
also hint at the breakdown of this formalism as a plausible reason for the seemingly
unphysical instability they observe for sharp base concentration profiles.
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The above discussion reflects our currently incomplete understanding of the analogy
between displacements in Hele-Shaw cells and porous media, respectively, with
regard to a quantitative description of the miscible viscous fingering instability. The
current investigation addresses this deficit by conducting two-dimensional Stokes flow
simulations for plane channels, and by subsequently investigating the linear stability
of the quasi-steady base states thus obtained with respect to spanwise perturbations.
The resulting dispersion relations can then be compared with corresponding findings
for Darcy flows, in order to identify both similarities and discrepancies between the
two.

Earlier Stokes flow simulations for miscible displacements in plane channels are
reported by Rakotomalala, Salin & Watzky (1997) for Péclet numbers up to O(500),
based on the BGK lattice Boltzmann approach. The authors identify parameter
regimes in terms of Péclet number and mobility ratio for which a sharp concentration
front develops. Their results compare well with the asymptotic predictions of Yang
& Yortsos (1997). They also determine the shape of the displacement front in the
limit of high mobility ratios, and they find good agreement with the results of
Reinelt & Saffman (1985) for the corresponding case of immiscible displacements
at high capillary numbers. In the present investigation, we will extend the results of
Rakotomalala et al. (1997) to significantly higher Péclet numbers and mobility ratios,
which will bring to light some new and unexpected effects.

However, the main goal of the present investigation lies in the systematic linear
stability analysis of miscible displacements in Hele-Shaw cells, based on the three-
dimensional Stokes equations. The nonlinear two-dimensional Stokes flow simulations
merely serve to provide the quasi-steady base states required for this analysis. Our
particular interest will focus on similarities and discrepancies between Stokes and
Darcy results for the viscous fingering instability.

The paper is structured as follows. The physical problem, along with the governing
equations and dimensionless parameters, is defined in § 2. Section 3 describes the
results from the nonlinear Stokes simulations and provides a detailed characterization
of the quasi-steady base states for the stability analysis. Section 4 discusses the
subsequent linearization of the Stokes equations around this base state, along with
the formulation of the numerical eigenvalue problem and the validation of the stability
calculations. The results obtained from these calculations will be discussed in detail,
with particular focus on the influence of the Péclet number and mobility ratio on the
growth rate and the wavelength of the most dangerous mode. Differences between
these findings and corresponding Darcy results will be discussed. Furthermore,
comparisons with experimental data for Hele-Shaw displacements will be made, and
similarities with immiscible displacements will be discussed. Finally, § 5 summarizes
the main findings, and points to future research.

2. Physical problem
We consider two constant-density miscible fluids of different viscosities in a Hele-

Shaw cell, as shown in figure 1. The less viscous fluid displaces the more viscous fluid
to the right-hand side. For narrow gaps the flow velocities will be very small, so that
the fluid motion is governed by the three-dimensional Stokes equations

∇ · u = 0, (2.1)

∇p = ∇ · τ , (2.2)

ct + u · ∇c = D∇2c. (2.3)
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Figure 1. Geometry of the Hele-Shaw cell. The less viscous fluid on the left-hand side
displaces the more viscous fluid on the right-hand side.

Here u denotes the flow velocity, and c indicates the relative concentration of the more
viscous fluid. τ = µ(∇u + ∇uT ) represents the viscous stress tensor for Newtonian
fluids. The components τij have the usual definitions in Cartesian coordinates (Panton
1984). D refers to the diffusion coefficient, which is assumed constant. The cell has a
gap of width e, with z indicating the gapwise or cross-gap direction. The x-direction
will be referred to as the spanwise direction.

In following other authors, the viscosity µ is assumed to be an exponential function
of the concentration c,

µ = µ1e
Rc, (2.4)

where µ1 indicates the viscosity of the less viscous fluid. The logarithm R of the
viscosity ratio is defined as

R = ln
µ2

µ1

. (2.5)

The governing equations are rendered dimensionless by introducing a characteristic
length L∗, velocity U ∗, time T ∗ and pressure P ∗ in the form of

L∗ = e, (2.6)

U ∗ = U, (2.7)

T ∗ =
e

U
, (2.8)

P ∗ =
µ1 U

e
. (2.9)

where U refers to the average velocity across the gap of the Hele-Shaw cell. We thus
obtain the set of dimensionless equations as

∇ · u = 0, (2.10)

∇p = ∇ · τ , (2.11)

ct + u · ∇c =
1

Pe
∇2c, (2.12)

where

Pe =
Ue

D
. (2.13)

The Péclet number Pe indicates the relative strength of convective to diffusive
transport.
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Figure 2. Coordinate system of the computational domain, with boundary conditions in
terms of deviation velocities, as described in the text.

3. Two-dimensional Stokes flow simulations
3.1. Numerical implementation

Nonlinear Stokes flow simulations are employed to obtain the two-dimensional
convectively dominated base state required for the subsequent linear stability analysis.
For this purpose, we cast the two-dimensional Stokes equations into the fourth-order
streamfunction formulation, by taking the curl of the momentum equations and using
the definition of the streamfunction to replace the velocity terms by the streamfunction
and its derivatives. We arrive at

∇4ψ = F (y, z), (3.1)

ct + u · ∇c =
1

Pe
∇2c, (3.2)

where the streamfunction ψ is defined by

v = ψz, w = −ψy (3.3)

and

∇4ψ = ψyyyy + 2ψyyzz + ψzzzz, (3.4)

F (y, z) = R
(
cyy + czz + Rcy

2 − Rcz
2
)
(ψzz − ψyy) − 4R(cyz + Rcycz)ψyz

− 2Rcy(ψyyy + ψyzz) − 2Rcz(ψyyz + ψzzz). (3.5)

Figure 2 shows the two-dimensional computational domain employed for the
simulations, along with the imposed boundary conditions. We select the size of
the domain in the flow direction sufficiently large, so that a quasi-steady displacement
front can evolve without being affected by the upstream and downstream boundaries.
The overall velocity field is decomposed into plane Poiseuille flow plus a deviation
from it, which goes to zero at all boundaries. We thus obtain the following set of
boundary conditions for this deviation component

y = Ly: ψ = 0, ψy = 0, c = 1 (3.6)

y = −Ly: ψ = 0, ψy = 0, c = 0 (3.7)

z = ±0.5: ψ = 0, ψz = 0, cz = 0 (3.8)

We perform all simulations in a reference frame moving with the average velocity of
the Poiseuille flow and employ a domain of length 8 for most simulations.

The temporal discretization is accomplished by an explicit third-order accurate,
low-storage Runge–Kutta (Wray 1991) time integration scheme for updating the
concentration field. Compact finite differences (Lele 1992) of up to sixth order in
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the interior of the domain, and fourth order at the boundaries, are employed for the
spatial discretization of the concentration derivatives, in order to avoid the appearance
of numerical instabilities in the convection–diffusion equation. As will be seen below,
a sharp concentration front evolves at the tip of the displacement front, particularly
at high values of Pe, while the velocity fields are far smoother. Hence second-order
finite differences are sufficient for discretizing the streamfunction derivatives in both
directions. This lower-order approximation also helps keep the coefficient matrix for
the discretized fourth-order streamfunction equation sparse, so that it can be solved
by means of the sparse direct linear solver implemented in the software package
UMFPACK (Davis & Duff 1997; Davis 2003a , b). The largest simulations involved a
computational domain of length 10 in the streamwise direction, with 1281 × 225 grid
points.

We examined the influence of the domain length and spatial resolution on our
results, in order to ensure the absence of any numerical artefacts in our simulation
results with regard to the detailed shape of the front tip and its propagation
velocity. We validated our code by such simple test cases as the one-dimensional
self-similar diffusion of the initial concentration profile in the absence of flow, and the
reproduction of plane channel flow across the gap of the cell when the viscosities of
the two fluids are equal. Additionally, we applied our nonlinear simulation procedure
to calculate the growth rates of gravity-driven instabilities in miscible Hele-Shaw
flows, for which we had derived linear stability results in a previous investigation cf.
(Goyal & Meiburg 2004). Excellent agreement between these two cases validated our
numerical results. Over the next few sections we also compare our findings with some
earlier results in literature, in different parameter regimes, which provides further
validation.

3.2. Evolution of the quasi-steady displacement front

Figure 3 depicts concentration fields from a numerical simulation for Pe = 103 and
R = 3 at various times. The initial condition specifies a one-dimensional profile for the
concentration, along with plane Poiseuille flow for the velocity field. The concentration
profile is taken from the family of one-dimensional solutions describing the self-similar
diffusive decay of a step profile

c0 = 1
2

+ 1
2
erf

(
y

δ

)
. (3.9)

The initial profile thickness is governed by the thickness parameter δ. Results from
simulations for different values of δ demonstrate that the final quasi-steady shape
of the front is independent of δ, so that we can employ a value of δ = 0.1 for
all calculations. Upon the start of the flow, the velocity field immediately deforms
the concentration distribution in the interior of the cell, while the concentration at
the wall changes due to diffusion only. In turn, this change in the concentration
distribution modifies the viscosity field, thus leading to the formation of a well-
defined displacement front of the less viscous fluid, which propagates along the centre
of the Hele-Shaw cell. This front exhibits a steep concentration layer at the tip, and
diffusively spreading layers at its sides. After some time, the tip of the front and
the associated concentration field reach a quasi-steady state in the reference frame
moving with the front.

We now discuss the properties of this quasi-steady displacement front in more
detail. In order to establish the existence of this quasi-steady state quantitatively, we
define the front thickness d as the distance in the horizontal direction over which
the concentration at the tip of the front changes from 0.1 to 0.9 (cf. figure 4a).
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Figure 3. Evolution of a quasi-steady base state in the area near the tip of the displacement
front for Pe = 103 and R = 3. The c = 0.1, 0.5 and 0.9 contours are plotted at t = 0.5, 1.5, 2.5
and 3.5, respectively.

Figure 4(b) plots d vs. time, where the c = 0.1 and 0.9 locations have been determined
to a high degree of accuracy by means of a cubic spline interpolation of the
computed concentration field. It can be seen that for both of the initial interface
thickness parameters, d attains the same constant value for large times. We denote
this final constant value of the front thickness by d0. This behaviour demonstrates
the emergence of a quasi-steady state whose properties do not depend on the initial
interfacial thickness parameter δ, as mentioned earlier. Corresponding results are
generally obtained for Péclet numbers above O(500) and viscosity contrasts of
R = 3 and higher. For smaller Pe and R values, strong diffusive effects prevent
the evolution of a quasi-steady state. Here diffusion outweighs convection, so that a
steep concentration layer at the tip of the front cannot be maintained.

Figure 5 shows the value of the quasi-steady front thickness for various Péclet
numbers and viscosity ratios. We remark that for either R < 2 or Pe< 500, truly
quasi-steady states do not form, while for R = 2 a quasi-steady state is reached only
for Pe> 2000. However, for comparison purposes, the figure still displays results for
several lower values of Pe and R = 2, since a nearly steady state does persist for
a very short period of time. As Pe, and hence the convective effects, increase, the
front thickness is seen to diminish. Basic scaling arguments in terms of dimensional
quantities explain this behaviour, cf. the work by Chen & Meiburg (1996) on miscible
displacements in capillary tubes. A straightforward one-dimensional balance of strain
and diffusion effects on the quasi-steady concentration field near the tip of the front
according to

v
∂c

∂y
= D

∂2c

∂y2
, (3.10)
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Figure 4. (a) The front thickness d is defined as the horizontal distance between the c = 0.1
and 0.9 contours along z = 0. (b) d vs. time for Pe = 103, R = 3 and two different initial
interface thickness parameters δ. Note that the final value d = d0 is independent of the initial
value of δ.

yields for the quasi-steady front thickness d0

d0 � Pe−1/2. (3.11)

Thus, the front thickness should scale inversely with the square root of Pe. Figure 5
confirms the validity of this relationship, which holds with a high degree of accuracy
for R > 3. Eventually, the quasi-steady state will decay for all Péclet numbers, owing to
lateral diffusion of the more viscous fluid into the front. Chen & Meiburg (1996) also
provide scaling arguments similar to the above for the length of the time intervals
over which this steady state persists for different Péclet numbers. The numerical
expense associated with these simulations prevents us from verifying the validity of
these scaling arguments, since we cannot perform simulations over such long periods
of time.

Rakotomalala et al. (1997) performed corresponding BGK lattice gas simulations
for miscible displacements up to Pe = 512. In this range of Péclet numbers, and for
viscosity ratios of up to R = 7, the present Stokes simulation results compare well
with their earlier calculations. To avoid repetition, we hence do not present any results
for Péclet numbers smaller than O(500), and instead refer the reader to their work.
Specifically, they provide data on the tip velocity, the fraction of fluid left behind
on the walls of the cell, and the reduced finger width. Our simulations confirm these
results. In the following, we will report several new observations for higher values of
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Figure 5. Thickness of the quasi-steady displacement front as a function of Pe for different
viscosity ratios. The dashed line corresponds to the Pe−1/2 power law.

Pe and large viscosity contrasts that cannot be inferred from the earlier, lower Pe
results.

3.3. Velocity of the displacement front

Figure 6(a) displays the velocity of the quasi-steady tip as a function of the Péclet
number for different viscosity ratios. We noted earlier that our simulations are
performed in a reference frame moving with the average velocity of the Poiseuille
flow. However, in all our figures we include the contribution from the mean flow
and present the total velocity of the front. At R = 2 the velocity of the tip increases
with Pe, while for R = 3 an intermediate Péclet number of 1000 corresponds to a
maximum in the tip velocity. Here it is to be kept in mind that these results for
low Pe and R are not yet truly quasi-steady, as discussed above. On the other hand,
for higher viscosity contrasts we find the tip velocity to decrease with increasing Pe.
This observation is in contrast to, for example, the results reported by Petitjeans &
Maxworthy (1996) for miscible displacements in capillary tubes, which exhibit an
increase in the tip velocity with increasing Pe. Corresponding data for immiscible
displacements (cf. Reinelt & Saffman (1985) for Hele-Shaw flows; Taylor (1961) and
Cox (1962) for capillary tubes) typically show an increase in tip velocity with capillary
number Ca, which is defined as

Ca =
µU

T
. (3.12)

Here T refers to the surface tension, while µ and U have their usual definitions
provided earlier. We will return below to this interesting result regarding the Pe-
dependence of the tip velocity.
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Figure 6. Quasi-steady tip velocity as a function of (a) Pe, and (b) R. For low values of R,
the front velocity increases with Pe, while the opposite holds for large values of R. At mild
viscosity contrasts, the tip velocity is nearly independent of Pe, while for larger viscosity ratios
the front slows down as Pe increases.

Figure 6(b) shows the variation of the tip velocity with the exponential of the
viscosity ratio eR , in order to facilitate comparison with the results of Rakotomalala
et al. (1997). The secondary axis depicts the fraction m of the more viscous fluid left
behind on the walls of the cell. This fraction m, defined as

m = 1 − U

Vtip

, (3.13)

is frequently employed as a diagnostic measure in both capillary tubes and Hele-Shaw
cells. For all values of Pe, an increase in the viscosity contrast results in a faster tip,
and hence a larger value of m. The same trend was observed by Rakotomalala et al.
(1997) for Pe up to 512. At a value of Pe = 500, our results for the tip velocity and
m duplicate their values almost exactly over the range of viscosity ratios (cf. figure 10
in Rakotomalala et al. 1997). As mentioned earlier and shown in figure 6(a), the
behaviour at higher Pe cannot be extrapolated from these lower Pe results, owing to
the changes in the dependence of Vtip on Pe.

Yang & Yortsos (1997) propose an asymptotic method for analysing two-
dimensional Hele-Shaw flows in the limits of infinite Péclet number and large aspect
ratio. Under these conditions, the flow away from the tip reduces to a parallel
flow between two plates, and it can be described by a conservation equation for
the gap-averaged concentration. Lajeunesse et al. (1999) used the same approach
to include buoyancy effects for vertical Hele-Shaw cells or tubes. They analyse the
resulting hyperbolic equation using kinematic wave theory. Under these assumptions
the gap-averaged version of (2.12) takes the form

∂C̄(y, t)

∂t
+

∂F (y, t)

∂y
= 0, (3.14)
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Figure 7. Simulation data for the gap-averaged concentration as a function of the
streamwise distance at t = 0, 0.5, 1.0 . . . 3.5, for Pe= 2000 and (a) R = 2, (b) R = 7.

where

C̄(y, t) =

∫ 0.5

−0.5

c(y, z, t) dz, (3.15)

F (y, t) =

∫ 0.5

−0.5

c(y, z, t)v(y, z, t) dz, (3.16)

are the gap-averaged concentration and the mass flux of the more viscous fluid,
respectively. Thus the convective velocity of each concentration value C̄ depends on
the shape of the flux function F

(
C̄

)
and is given by

V (C̄) =
dF

dC̄
. (3.17)

A closed-form expression for the streamwise velocity component can then be derived
as a function of the specific viscosity–concentration relationship. By assuming a
step profile for the viscosity across the interface, the above authors obtain explicit
expressions for the flux function F

(
C̄

)
in terms of the viscosity ratio and C̄. In our

case, both the Péclet number and the aspect ratio are finite, and the viscosity varies
exponentially with the concentration. Nevertheless, for large Pe the analysis should
still be approximately applicable, and it is of interest to check if it can predict the tip
velocities observed in the present investigation.

Figure 7 displays the concentration field averaged across the gap as a function of
the streamwise coordinate for Pe = 2000, and R = 2 and 7. Figures 8(a) and 8(b)
plot the flux F as a function of C̄, and C̄ as a function of V (C̄), for Pe = 2000
and various R. A truly quasi-steady state does not evolve for R = 2 and there is
a smooth change in the average concentration from 0 to 1. On the other hand, for
the higher viscosity contrast near C̄ = 0.45, the average concentration increases and
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Figure 8. (a) Flux, and (b) velocity of the gap-averaged concentration value as a function of
the gap-averaged concentration, for Pe= 2000 and different viscosity ratios.

then decreases in the streamwise direction, before finally increasing rapidly to unity,
as shown in figure 7(b). This is a result of the bulging of the finger just behind
the tip, which becomes more pronounced with an increasing viscosity contrast. It
is already visible for R = 3 in figure 3. This is responsible for the decrease in the
average concentration with y behind the tip as mentioned above. Consequently, F

becomes double-valued at higher viscosity contrasts, near C̄ = 0.45, cf. figure 8(a).
As a result of this discontinuity, the flux function ceases to be differentiable in the
region near C̄ = 0.45 and the fitting procedure assigns an infinite value to the velocity
in figure 8(b). However, it can be seen that for all higher C̄ the velocity is nearly
constant, until it is slightly reduced as it approaches the pure more viscous fluid.
This constant plateau value represents the velocity of the moving tip. Our results
correspond to the case for which Lajeunesse et al. (1999) observe three-dimensional
patterns in their experiments, along with a frontal shock with a velocity greater than
the maximum Poiseuille flow velocity of 1.5. The present flux values and velocities of
the shock compare well with their predictions. Note that our plots appear inverted
with respect to theirs, since we define our concentration based on the more viscous
fluid. Of course this is purely a qualitative comparison, owing to the presence of
gravitational effects in the experiments.

Figure 9 compares the velocities obtained from figure 8 with those from our
simulations over the entire parameter regime. We observe excellent agreement
between the two sets of results. As Pe increases, the agreement between theoretical
predictions and simulation results improves, since the underlying assumptions hold
more rigorously at higher Péclet numbers. Thus, at Pe = 10 000 the tip velocity
derived from the kinematic wave theory is nearly identical to the simulation result.

3.4. Influence of the viscosity–concentration relationship

For different fluid pairs, the dependence of the viscosity on the concentration can
be of different functional form. In order to evaluate the influence of the specific
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Figure 9. Quasi-steady tip velocity as a function of Pe, for different viscosity ratios.
Comparison of the present simulation data with kinematic wave theory results. Solid
lines: present simulation data. Dashed lines correspond to the tip velocity obtained from
V (C̄) = dF/dC̄.

viscosity–concentration relationship, we perform an additional set of simulations for
a linear dependence of the viscosity on the concentration

µ = 1 + (eR − 1)c, (3.18)

with R = 7 and different values of Pe. Figure 10(a) shows that the front is slightly
thicker if the viscosity varies linearly with the concentration, while it follows the same
overall trend of decreasing width with increasing Pe. For larger Pe this difference
decreases, as the concentration boundary layer becomes very thin. On the other
hand, the tip velocity is much more sensitive to the specific viscosity–concentration
relationship. For a linear dependence, the tip is seen to move faster for larger Pe, while
it slows down for an exponential dependence. For large Pe values, the tip velocities
converge to the same asymptotic value, while for lower Péclet numbers of O(1000)
the difference in the front velocities can be up to 5 %. This could in part explain
the discrepancies observed for capillary tube displacements between the experimental
data of Petitjeans & Maxworthy (1996) and the corresponding simulation results of
Chen & Meiburg (1996) for the fraction of the more viscous fluid left behind on the
walls.

3.5. Comparison with earlier miscible and immiscible results

As mentioned earlier, immiscible displacements have been studied in some detail
in the past, both experimentally and numerically. It is thus interesting to compare
miscible displacements in the limit of large Pe with immiscible displacements in the
limit of large Ca. For this purpose we focus on the width of the displacement front,
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Figure 10. Influence of the viscosity–concentration relationship for R = 7 on (a) the front
thickness and (b) the tip velocity of the displacement front. With regard to the front thickness,
the influence is seen to be rather small. For the linear dependence, the tip moves faster as Pe
increases, whereas for the exponential form, the tip slows down.

commonly referred to as the reduced finger width, which is defined as

λ = 1 − m Hele-Shaw cell, (3.19)

λ =
√

1 − m capillary tube. (3.20)

Reinelt & Saffman (1985) solve the Stokes equations numerically for immiscible fluid
displacements in a Hele-Shaw cell or capillary tube, in the limit of R → ∞. Their
results show that as Ca increases to 2, the reduced finger width λ asymptotes to a
value of about 0.62. Analogously, in a capillary tube, Taylor (1961) measured λ = 0.67
for Ca = 2. Cox (1962) performed experiments at much higher values Ca > 10 and
showed that λ asymptotes to 0.63. The miscible fluid capillary-tube experiments by
Petitjeans & Maxworthy (1996) with R ∼ 5 and Pe of O(40 000) asymptote to the same
value of the reduced finger width. In these experiments, λ decreases with increasing
Pe, while our simulations demonstrate an increase in λ with Pe. This is because of
the exponential viscosity–concentration relationship employed by us, since the finger
width is merely the reciprocal of the quasi-steady tip velocity of the displacement
front.

Figure 11 displays the reduced finger width from our simulations as a function of
R for different Pe. We also plot the asymptotic limit of Reinelt & Saffman (1985) for
high Ca and R → ∞ in figure 11. It is clear that a further increase in Pe would cause
the finger width to approach the limit given by Reinelt & Saffman (1985).

4. Linear stability analysis
4.1. Formulation of the eigenvalue problem

In the following, we investigate the linear stability of the quasi-steady two-dimensional
base state with regard to periodic spanwise perturbations. Towards this end, the
three-dimensional Stokes equations are linearized around the two-dimensional base
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Figure 11. Reduced finger width λ vs. R for different Pe. The dashed line (R&S) corresponds
to the immiscible results of Reinelt & Saffman (1985) for large Ca in the limit of R → ∞.

state

u(x, y, z, t) = 0 + û(y, z) sin(βx) eσ t , (4.1)

v(x, y, z, t) = v̄(y, z) + v̂(y, z) cos(βx) eσ t , (4.2)

w(x, y, z, t) = w̄(y, z) + ŵ(y, z) cos(βx) eσ t , (4.3)

p(x, y, z, t) = p̄(y, z) + p̂(y, z) cos(βx) eσ t , (4.4)

c(x, y, z, t) = c̄(y, z) + ĉ(y, z) cos(βx) eσ t . (4.5)

Here, variables marked with a hat represent two-dimensional eigenfunctions, while
those marked with an overbar denote the base state. Note that the perturbations
are assumed to be wavelike in the spanwise x-direction. The above expressions are
substituted into the governing equations, the base state is subtracted out, and all
terms quadratic in the disturbances are neglected.

The resulting set of equations is discretized in a domain that extends from z = −0.5
to 0.5 and is centred around the tip of the displacement front in the streamwise
direction. This domain has to be taken sufficiently large, so that the perturbations
can be assumed to vanish at the upstream and downstream boundaries. At the walls,
the perturbation velocity is set to zero, and the normal derivative of the concentration
perturbation is assumed to vanish. We do not require boundary conditions for the
pressure perturbation. The base state velocity and concentration fields as well as all
their necessary derivatives are interpolated from the DNS grid to the stability grid
using sixth-order Lagrangian interpolation. Since large gradients in both directions
exist near the tip of the displacement front, we follow the approach outlined by
Vanaparthy, Meiburg & Wilhelm (2003) in order to concentrate the grid points
around the tip of the front. In the z-direction, the nodes are spaced equidistantly,
while a stretched grid is employed on the two subdomains y � ytip and y � ytip which



344 N. Goyal and E. Meiburg

concentrates the grid points near ytip. For this purpose, a mapping function provided
by Fletcher (1990) is employed

yi = si

l

2
, (4.6)

where

si = Pηi + (1 − P )

(
1 − tanh[Q(1 − ηi)]

tanh Q

)
, (4.7)

with

ηi =
i − 1

n − 1
. (4.8)

Here n represents the number of axial points within each subdomain, while P and Q

are parameters to be chosen appropriately, in order to obtain a suitable distribution
of grid points. Thus discretization of the equations using second-order central finite-
differencing in both directions, yields an algebraic system of the form

A φ = σ B φ. (4.9)

This represents a generalized eigenvalue problem with the growth rate σ as the
eigenvalue, while the eigenvector φ reflects the shape of the perturbations. As usual,
a positive (negative) eigenvalue indicates unstable (stable) behaviour. A and B denote
the coefficient matrices and are given by

A =

⎛
⎜⎜⎜⎜⎝

0 βI ∂y ∂z 0

βI M1 M2 M3 0

−∂y 0 M4 M5 M6

−∂z 0 M7 M8 M9

0 0 −c̄y −c̄z M10

⎞
⎟⎟⎟⎟⎠ , (4.10)

with

M1 = eRc̄[−β2I + ∂yy + ∂zz + R(c̄y∂y + c̄z∂z)], (4.11)

M2 = −βReRc̄c̄y I, (4.12)

M3 = −βReRc̄c̄zI, (4.13)

M4 = eRc̄[−β2I + ∂yy + ∂zz + R(2c̄y∂y + c̄z∂z)], (4.14)

M5 = ReRc̄c̄z∂y, (4.15)

M6 = ReRc̄[2v̄y(Rc̄y I + ∂y) + (v̄z + w̄y)(Rc̄zI + ∂z) (4.16)

+ (v̄yy + v̄zz)I],

M7 = ReRc̄c̄y∂z, (4.17)

M8 = eRc̄[−β2I + ∂yy + ∂zz + R(c̄y∂y + 2c̄z∂z)], (4.18)

M9 = ReRc̄[2w̄z(Rc̄zI + ∂z) + (v̄z + w̄y)(Rc̄y I + ∂y) (4.19)

+ (w̄yy + w̄zz)I],

M10 =
1

Pe
(−β2I + ∂yy + ∂zz) − v̄∂y − w̄∂z. (4.20)
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Ly Ny Nz σ

11.0 234 121 0.6301
11.0 258 121 0.6399
11.0 282 121 0.6461
13.0 284 121 1.0660
13.0 313 121 1.0669
13.0 342 121 1.0665
15.0 310 121 1.0674
15.0 340 121 1.0684
15.0 371 121 1.0686
13.0 313 121 1.0669
13.0 313 141 1.1038
13.0 313 161 1.1222
13.0 313 181 1.1316
13.0 313 201 1.1367

Table 1. Convergence data regarding the necessary domain length and grid resolution for
Pe = 2000, R = 7 and β = 2.

and

B =

⎛
⎜⎜⎜⎝

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 I

⎞
⎟⎟⎟⎠ , φ =

⎛
⎜⎜⎜⎝

p̂

û

v̂

ŵ

ĉ

⎞
⎟⎟⎟⎠ . (4.21)

The viscosity ratio R and the Péclet number Pe represent the two dimensionless
parameters that characterize the base flow, and the wavenumber β reflects the
perturbation wavelengths.

4.2. Numerical solution

In order to calculate the largest eigenvalues along with the corresponding eigenvectors,
we employ the ARPACK package based on the Arnoldi iteration method (Lehoucq,
Sorenson & Yang 1998). This iterative solver requires an external linear solver. In this
context it is helpful that A is extremely sparse, with fewer than 0.2 % of the entries
differing from zero. We avoid establishing the complete matrix by storing only the
non-zero elements, and use a sparse direct linear solver implemented in the software
package UMFPACK (Davis & Duff 1997; Davis 2003a). This approach differs from
the one employed by Graf & Meiburg (2002) and Goyal & Meiburg (2004), who used
spectral schemes for the discretization, with a non-equidistant grid in the streamwise
direction. In this case the discrete derivative operators are more dense, and A has
about 2 % non-zero elements. Test calculations show that the incorporation of an
interpolated base flow in the stability calculations increases the necessary spatial
resolution. Detailed comparisons show that for a second-order scheme, the number
of grid points required for convergence is around three times that for the spectral
scheme. However, because of the extremely sparse nature of the operators and
coefficient matrices, it still pays off to use the lower-order method, as the overall
memory and time requirements are smaller compared to the spectral approach.

We performed several checks to determine the required domain length in the
streamwise direction, along with the minimum number of grid points necessary to
obtain converged eigenvalues and well-resolved eigenvectors. It was found that smaller
wavenumbers generally require larger domain sizes. Table 1 provides a summary of
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these validation studies for a particular wavenumber, viscosity ratio and Péclet
number. First, we check on the domain length and necessary resolution in the flow
direction. It is evident that increasing Ly beyond 13 and Ny above 313 does not
alter the leading eigenvalue by more than 1 %. In the bottom half of the table we
similarly determine the sufficient value of Nz to be 181. A minimum domain length
of 10 was always maintained. In our current investigation the smallest wavenumber
was β = 0.25, which required a domain of size 26. The largest grid we needed for our
stability calculations was Ny = 353 and Nz = 201. Since we solve for five variables

at each grid point, the matrix A is of size (5 × Ny × Nz)
2, where Ny and Nz are the

number of grid points in the y- and z-directions, respectively. Hence, for the largest
grid the matrix is of size 354, 765 × 354, 765. 50GB of memory is required to perform
the stability analysis for this grid resolution, which reflects the magnitude of the
calculations.

The final set of validation studies is intended to confirm that over the duration of
the quasi-steady base state, the linear stability results do not depend on the specific
time at which the base state is evaluated. As mentioned earlier, for Pe = 2000 and
R = 5 the quasi-steady base state around the moving displacement front persists
from about t = 2.5 to an indeterminately long time. We performed linear stability
calculations at the two different times of t = 2.5 and 3.5, respectively, and obtained
identical growth rates over the entire range of wavenumbers.

4.3. Results

We obtain dispersion relations for all combinations of Pe and R examined in the
current study. The growth rate increases with the wavenumber, up to a particular
value of β , beyond which the growth rates decrease with further increase in the
wavenumber. This clear peak at an intermediate wavenumber, reflects the most
unstable perturbation wavelength. Additionally, for each parameter combination
there is a cutoff wavenumber, beyond which all perturbations are damped. Figure 12
provides contour plots of the eigenfunctions for all perturbation components,
corresponding to the dominant wavelength mode for a particular parameter
combination. The superimposition of the concentration eigenfunction in the bottom
part of figure 12 shows that the instability develops centred around the tip of the
moving front. The concentration perturbation lies almost entirely within the interfacial
thickness of the front while the velocity components spread over a greater distance
in the streamwise direction.

Figure 13 gives a physical view of the instability in the spanwise direction. The
contours in figure 13(a) reflect the wavy shape of the interface separating the two
fluids, along with the perturbation velocity directional vectors in the centre-gap (x, y)-
plane. Here, the interface contours were obtained by adding a suitable multiple of
the concentration eigenfunction to the base concentration field. It can be seen that
at the wave crests the interface is accelerated by the perturbation velocity, while it is
being slowed down at the troughs. This stretching of the front in the direction of the
flow reflects a growing instability mode. Figure 13(b) displays the interface obtained
as mentioned above together with the velocity directional vectors in the (x, z)-plane
at a location inside the front, just behind its tip. The interface is symmetric about
the centreline of the Hele-Shaw cell, as reflected by identical concentration contours
on either side of the z = 0 line. At a certain spanwise location the front is seen to
widen, while at neighbouring locations its width decreases. In summary, there are
two superimposed roll-like structures which, periodically in the spanwise direction,
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Figure 12. The eigenfunctions for (from top to bottom) û, v̂, ŵ and ĉ, for Pe = 1000, R = 5
and β = 2. The concentration eigenfunction is superimposed on the base flow concentration
field. It shows that the instability develops centred around the tip of the front. Solid lines
denote positive values, while dashed lines indicate negative ones.
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Figure 13. (a) Perturbation velocity directional vectors superimposed on the total concen-
tration field in (a) the centre-gap (x, y)-plane, and (b) the (x, z)-plane at y = 1.84, just behind
ytip = 1.85. Two roll-like structures are observed which, periodically in the spanwise direction,
accelerate (decelerate) and widen (narrow) the displacement front.

accelerate (decelerate) and widen (narrow) the front. A comparison of the magnitude
of the perturbation vorticity from these figures shows that the primary motion is
caused by the counter-rotating rolls in the (x, y)-plane, as the cross-gap component of
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Figure 14. Three-dimensional view of the spanwise instability.

vorticity is much larger than the streamwise component. Figure 14 shows a qualitative
three-dimensional view of the development of the instability in the spanwise direction.
In order to obtain this figure, we again added a multiple of the three-dimensional
perturbation concentration to the base concentration and then plotted the c = 0.5
contour.

In the following, we shall focus on the growth rates and wavelengths of the dominant
modes for various parameters. Figure 15 displays the growth rate of the most amplified
wavenumber as a function of the viscosity ratio for different Péclet numbers. An
increase in the viscosity contrast is found to be uniformly destabilizing for all Péclet
numbers, except a slight damping effect for Pe=2000 as R increases from 6 to 7. The
growth rate increases monotonically with Pe for R < 5, while at even higher viscosity
ratios, larger Pe values lower the growth rate, as seen in the inset of figure 15. We plot
the wavenumber of the most dangerous mode and the cutoff mode with the viscosity
ratio in figure 16. An increase in the viscosity contrast leads to a decrease in the
dominant wavenumber for all values of Pe. For Pe = 2000, however, the wavenumber
does increase very mildly, as R increases form 6 to 7. With increasing Pe, the βmax shifts
towards larger wavelengths for all values of R. At R =7, it is nearly independent
of Pe. Even though the wavelength of the dominant mode increases with Pe and
R, the cutoff wavelength decreases with increasing values of these parameters (cf.
figure 16b), similar to earlier findings. Figure 16 suggests that a further increase in the
Péclet number will shift the most amplified mode to even lower wavenumbers, and
thereby closer to the wavenumbers observed in the high-Pe experiments of Paterson
(1985) and Lajeunesse et al. (1997), which were conducted at Pe � O(105).

Darcy flows exhibit entirely different behaviour with regard to the dominant
wavelengths and their growth rates, and will be discussed in detail later. The current
findings are also in direct contrast to the earlier findings of Fernandez et al. (2002) and
Graf & Meiburg (2002) for gravity-driven instabilities in a Hele-Shaw cell without
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Figure 15. Growth rate of the most dangerous mode as a function of the viscosity ratio for
different Péclet numbers. For small viscosity contrasts, higher Pe values are destabilizing, while
for R � 5 the growth rates decrease with increasing Pe.
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Figure 16. Wavenumber of (a) the most dangerous mode and (b) the cutoff mode as a function
of the viscosity ratio for different Pe. Higher Pe values increase the dominant perturbation
wavelength and decrease the cutoff wavelength for all R.

a net displacement. These authors observe a decrease in the dominant wavelength
with increasing Rayleigh number, which similarly to Pe represents a measure of
convective to diffusive transport. This seems to indicate that there is a qualitative
difference between the nature of the instabilities in displacement flows vs. those
driven by gravitational effects, at least at high Pe. It is not immediately obvious
why an increase in Pe leads to longer wavelength dominant modes, or lower growth
rates at higher viscosity ratios. The important length scales in the baseflow field,
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besides the width of the gap, are the front thickness d0 and the reduced width of the
finger λ. d0 decreases uniformly with Pe and R (cf. figure 5), while λ decreases with
Pe for small values of R and exhibits a reverse trend at larger viscosity contrasts
(cf. figure 11). We would expect thinner and narrower fronts to be more unstable,
because of stronger concentration gradients. On the other hand, Goyal & Meiburg
(2004) found a stabilizing effect of decreasing interfacial thickness of the base state
concentration profile on gravitationally driven instabilities in a Hele-Shaw cell. They
attribute this to the two interacting length scales present in the Hele-Shaw problem,
namely, the finite width of the gap and the interfacial thickness of the mixing layer.
Thicker interfaces increasingly shift the eigenfunctions into the less viscous fluid at
high R, leading to lesser damping and higher growth rates.

However, in the present case with complex interfacial shapes of the eigenfunctions
and far thinner interfaces, we do not notice any significant shift of the eigenfunctions
which reside almost completely within the tip of the displacement front over the
entire range of Pe and R examined here. Further, the relatively mild damping of the
growth rates with Pe at high values of R and also with R for Pe = 2000, leads to very
similar looking eigenfunctions. In an attempt to understand these effects, we tried
to delineate the effects of the various parameters in the baseflow from those caused
by the variation of Pe and R in the perturbation equations. Hence, we performed
some stability calculations by varying Pe and R artificially for different baseflow
configurations, in contrast to true flows where these parameters would have the same
values in both the two-dimensional simulations and the linear stability analysis. This
could help us distinguish and compare the relative influence of d0 and λ, with that of
Pe and R on the perturbations. These calculations showed that an increase in Pe in
the perturbation equations causes the eigenfunctions to become sharper and reside
completely within the tip of the baseflow front, which always has a stabilizing effect.
d0 and λ have a rather weak influence on the growth rates of the perturbation, though
generally, thicker and wider interfaces are more stable than their thinner, narrow
counterparts. As for the case of true flows, discussed earlier, we do not observe a
discernible shift of the eigenfunctions into the less viscous fluid.

These observations are in contrast to the gravity-driven instability (Graf & Meiburg
2002; Goyal & Meiburg 2004), where the front thickness plays an important role in
determining the growth rates. Figure 16 shows that the influence of Pe on βmax and
βcrit is very small and to a first approximation, they are practically independent of Pe.
As demonstrated by the scaling arguments of Fernandez et al. (2001), it seems that
the gapwidth alone sets the length scale of the viscous fingering instability, while the
changes in the base state modify it only slightly.

4.4. Comparison with miscible Hele-Shaw experiments

Paterson (1985) conducted radial displacements of glycerin by water (R � 7) at high
Pe numbers of O(105). He observed a dominant wavelength of about four times the
gap width. In comparison, for this value of R, our linear stability analysis predicts a
dominant wavelength of about 3.3 gap widths, albeit at a much lower value of Pe (cf.
figure 16). Computational limitations prevent us from extending our analysis to values
much beyond Pe= 2000. However, figure 16 indicates that for R = 7 the dominant
wavelength does not vary strongly with Pe, at least in the Pe-range investigated here.
Overall, there is a tendency for the dominant wavelength to increase with Pe, which
would bring the linear stability results closer to the experimental values. In assessing
the comparison, furthermore, it is to be kept in mind that the experiments were
carried out in the radial configuration, as opposed to the rectilinear flow considered
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in the stability analysis. In addition, the dominant wavelength in the experiments was
determined during the nonlinear stage, and not during the early stage of infinitesimal
perturbations. Given these limitations, the agreement between theory and experiment
can be considered satisfactory.

Lajeunesse et al. (1997) observe a dominant wavelength of 5 ± 1 gap widths for
their variable density, miscible displacement experiments in vertical Hele-Shaw cells
at Pe> 104. They point out that this value of the dominant wavelength is rather
independent of R over a wide range of mobility ratios from R ≈ 1 to R ≈ 6. As
mentioned above, it is possible that gravitational effects have an influence on the
dominant wavelength. The dominant wavelength in vertical displacements with density
stratification is an open question that we plan to address in more detail in the future.

Snyder & Tait (1998) conducted experiments in horizontal Hele-Shaw cells with
neutrally buoyant fluids and found the dominant wavelength of the instability to be
around twice the gap width. However, their data show substantial scatter across the
entire range of mobility ratios, so that a precise comparison is not possible.

4.5. Comparison with results obtained from Darcy’s law

Hickernell & Yortsos (1986) derived bounds for the growth of small perturbations
in porous media displacements in the absence of diffusion and dispersion. Tan &
Homsy (1986) treat both isotropic and highly anisotropic dispersion media in their
linear stability theory based on Darcy’s law. We rescale their relation corresponding to
isotropic dispersion in terms of our non-dimensional parameters, using the additional
facts that the flow rate is the same in both cases, and that the permeability of their
porous medium is related to the gap width of the Hele-Shaw cell. The dispersion
relation for a step concentration profile then reads

σ =
β

24Pe
{(RPe − 12β) −

√
144β2 + 24RβPe}. (4.22)

In figure 17, we compare the present Stokes flow dominant mode growth rates and
wavenumbers with those corresponding to (4.22) for the two lower values of Pe
considered here. Clearly, the dominant wavelengths and their growth rates are not
captured accurately by the Darcy analysis. At the lowest values of Pe=500, and
R = 3 the growth rates are comparable while an increase in either parameter leads to
a large discrepancy. We do not plot the cutoff modes from Darcy’s analysis here, but
mention that like the dominant wavenumber, it follows the same trend of a linear
increase with the viscosity ratio and much higher values as compared to the Stokes
analysis. For long waves, the Darcy analysis underpredicts the growth rate, while it
overpredicts the growth of short waves. Given the obvious limitations inherent in
applying Darcy’s law to variable viscosity flows in Hele-Shaw cells, this finding is not
unexpected, and it agrees with corresponding observations by Graf & Meiburg (2002)
for gravitationally driven instabilities.

4.6. Miscible vs. immiscible flow

It is of interest to compare the influence of Pe in unstable miscible displacements
with that of the capillary number Ca in immiscible ones. For small values of Ca,
Park & Homsy (1984) perform asymptotic expansions in order to determine the
dominant wavelength. Their results, which were confirmed by the experiments of Park,
Gorell & Homsy (1984), yield much larger wavelengths than found here. Subsequently,
Maxworthy (1989) compiled experimental results by several authors for the dominant
wavelength over a range of Ca (10−3 <Ca < 30). The data generally compare well
with those of Park & Homsy (1984) and Schwartz (1986) at low capillary numbers. At
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Figure 17. Comparison of the present Stokes flow results (solid lines) with (a) growth rates
and (b) wavenumbers based on Darcy’s law (dashed lines) for different Péclet numbers (Tan &
Homsy 1986).

higher Ca (1 <Ca < 30), the dominant wavelength remains fairly constant at about
five times the gap width of the Hele-Shaw cell. This value is reasonably close to the
dominant wavelength of about 3.3 gap widths found here for high viscosity contrasts
and large Pe.

5. Discussion and conclusions
The present investigation is intended to shed light on the miscible fingering

instability encountered when a less viscous fluid displaces a more viscous one in
a Hele-Shaw cell. As a first step, we performed two-dimensional Stokes simulations
of miscible displacements in a gap for Péclet numbers up to 104 and mobility ratios
up to about 103, corresponding to R =7. In the lower range of Pe and R, these
simulations agree closely with the earlier results of Rakotomalala et al. (1997). The
results indicate the existence of a quasi-steady state near the tip of the front for
Pe> O(500) and R > 2 − 3.

We characterize this quasi-steady state in terms of the front thickness and its
propagation velocity. The front thickness is seen to scale with Pe−1/2, while it is
only a weak function of the viscosity ratio. These findings are in agreement with
corresponding observations by Chen & Meiburg (1996) for miscible displacements in
capillary tubes. The nature of the viscosity–concentration relationship has a significant
influence on the quasi-steady state. For the exponential relation employed throughout
most of the investigation, we find that the tip velocity increases with Pe for small R,
while it decreases with Pe for large R. In contrast, for a linear viscosity–concentration
relationship, the tip velocity is seen to increase with Pe for all viscosity ratios. The
simulation results suggest that in the limit of large Pe and R, the width and tip velocity
of the front would asymptote to the same values as the immiscible counterpart studied
by Reinelt & Saffman (1985) for large Ca.
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In a second step, we examine the stability of this quasi-steady front to spanwise
perturbations. For all Pe, the maximum growth rate is found to increase monotonically
with R. At the largest value of Pe, however, the maximum growth rate is observed
at R = 6 and a slight damping occurs with further increase in the viscosity contrast.
The influence of Pe on the growth of the instability is non-uniform. For mild
viscosity contrasts, a larger Pe is found to be destabilizing, while for large viscosity
contrasts, an increase in Pe has a slightly stabilizing influence. We performed artificial
calculations to try and understand these effects. These did show that increasing Pe in
the perturbation equations surprisingly leads to a damping of the instability, while the
baseflow front thickness and width tend to modify the growth rates and wavelengths
only slightly. We did not observe a shift in the eigenfunctions for higher R, similar
to our earlier investigation of gravity-driven instabilities in Hele-Shaw cells (Goyal
& Meiburg 2004). In that situation, the competing influence of the two length scales
that enter the problem, namely, the interface thickness and the gap width of the
Hele-Shaw cell, led to higher growth rates for thicker interfaces at large viscosity
contrasts. Apparently, the gap width of the cell alone sets the length scale of the
instability in the present case, and both R and Pe have a relatively weak effect on the
dominant wavelength.

Many of the above effects are in stark contrast to observations based on Darcy’s
law, which find higher values of Pe and R to be uniformly destabilizing, and to
result in shorter instability wavelengths. The less complex behaviour of Darcy flows
originates from the presence of only one length scale in the problem, namely, the
initial interfacial thickness, while the added influence of the gap width causes much
more complex behaviour in Hele-Shaw flows.

A close inspection of the instability eigenfunction reveals the presence of two sets
of counter-rotating roll-like structures, with axes aligned in the cross-gap and in the
streamwise directions. The former lead to the periodic, in the spanwise direction,
acceleration and deceleration of the front, while the latter result in the thickening and
thinning of the front. These roll-like structures are aligned in such a way that the
front thickens where it speeds up, and thins where it slows down.

While detailed experimental data are not available for the growth rate of the
fingering instability, such data do exist for the dominant wavelength. Compared to
the experimental observations by Paterson (1985), our linear stability results predict
a somewhat lower most amplified wavelength. There may be several reasons for this
discrepancy. First, Paterson’s observations were made in radial displacements, while
our analysis considers rectilinear flows. Secondly, his data may have been collected
during a stage of the flow that was already influenced by nonlinear effects. Finally, and
perhaps most importantly, his experiments were conducted at Pe of O(105), whereas
the present results are limited to Pe no larger than 104. The linear stability analysis
shows that increasing Pe values generally lead to larger dominant wavelengths, which
does suggest that better agreement would be obtained if we were able to conduct the
analysis at the values of Pe employed in the experiments. Similarly, the wavelengths
predicted by the present linear stability analysis are somewhat smaller than the
experimental observations by Lajeunesse et al. (1997). However, it is to be kept in
mind that these authors consider vertical displacements in the presence of density
differences, which may well affect the dominant wavelength.

Finally, the present investigation comments on similarities and discrepancies
between the role of Pe in miscible displacements, and that of Ca in immiscible
ones. For immiscible displacements at infinite viscosity ratio, the theoretical analysis
by Park & Homsy (1984) and the compilation of experimental data by Maxworthy



354 N. Goyal and E. Meiburg

(1989) show that for low Ca, the wavelength of the most dangerous mode scales
as Ca−1/2, while for large Ca, a dominant wavelength of about five times the gap
width emerges. On the other hand, the present results show that for large R, the
dominant wavelength is largely independent of Pe and has a value of about 3.3 gap
widths. For small viscosity contrasts, the wavelength is seen to increase with Pe. These
observations indicate the limitations of the Pe − Ca analogy.

Possible extensions of the current investigation will address the effects of density
stratification in a gravitational field. In particular, it will be interesting to quantify
the modification of the most dangerous wavelength and the associated growth rate
by density effects, as this may aid in the comparison with the experimental data
discussed above. Furthermore, an extension of the present study into the nonlinear
regime promises to provide new insight. Specifically, it will be interesting to compare
the merging, splitting and shielding processes observed in three-dimensional Stokes
simulations with their Darcy counterparts. Efforts in these directions are currently
underway.
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